SWAMI VIVEKANAND ACADEMY

Class - XII - Maths -Test Paper - Date: 24/12/2019

General Instructions:

- (i) All the questions are compulsory.
- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- (iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.

Section 'A'

Q. 1-Q. 10 are multiple choice type questions. Select the correct option.

1. Let $A = \{1, 2\}$	Let $A = \{1, 2, 3\}$. Then number of relations containing $(1, 2)$ and $(1, 3)$ which are reflexive and symmetric but not transitive is							
	isitive is		-R -12 0					
(a) 1	(b) 2	(c) 3	(d) 4	- 1				

- 2. The domain of function $\cos^{-1}(2x-1)$ is
- (a) [0,1] (b) [-1,1] (c) (-1,1) (d) $[0,\pi]$

 \bigcirc 3. The area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 sq. units. Then, the value of k will be

(a) 9 (b) 3 (c)
$$-9$$
 (d) 6

4. The function $f(x) = \cot x$ is discontinuous on the set $\frac{101 \text{ lattps at}}{100 \text{ lattps}}$

(a)
$$\{x = n\pi : n \in Z\}$$
 (b) $\{x = 2n\pi : n \in Z\}$ (c) $\{x = (2n+1)\frac{\pi}{2}; n \in Z\}$ (d) $\{x = \frac{n\pi}{2}; n \in Z\}$

5. If $x = t^2$ and $y = t^3$, then $\frac{d^2y}{dx^2}$ is $\frac{d^2y}{dx^2} = \frac{d^2y}{dx^2} = \frac{d^2$

(a)
$$\frac{3}{2}$$
 (b) $\frac{3}{4t}$ (c) $\frac{3}{2t}$ (d) $\frac{3}{4}$

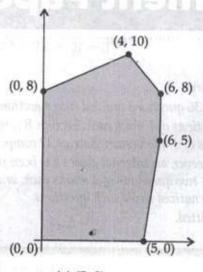
6. The integrating factor of

$$\frac{xdy}{dx} - y = x^4 - 3x \text{ is}$$

(a)
$$x$$
 (b) $\log x$ (c) $\frac{1}{x}$ (d) $-x$ 1

- 7. The total revenue in $\stackrel{?}{\sim}$ received from the sale of x units of a product is given by $R(x) = 3x^2 + 36x + 5$. The marginal revenue, when x = 15 is
 - (a) 116
- (b) 96

(c) 90


(d) 126

- 8. The position vector of the point which divides the join of points $2\vec{a}-3\vec{b}$ and $\vec{a}+\vec{b}$ in the ratio 3:1 is:
 - (a) $\frac{3\vec{a}-2\vec{b}}{2}$
- (b) $\frac{7\vec{a} 8\vec{b}}{4}$
- (c) $\frac{3\vec{a}}{4}$

1

- 9. Let A be a non-singular square matrix of order 3×3 . Then |adj A| is equal to
 - (a) A

- 10. The feasible solution for a LPP is shown in given figure. Let Z = 3x 4y be the objective function. Minimum of Z occurs at

- (a) (0, 0)
- (b) (0, 8)
- (c)(5,0)

(d) (4, 10)

2. a.Q. 10 are multiple choice type questions. Select the correct option

- (Q. 11-Q. 15) Fill in the blanks.
- 8
- 1

- 12. If $f(x) = |\cos x \sin x|$, then $f'\left(\frac{\pi}{3}\right)$ is equal to

The slope of tangent to the curve $y = x^2 + 2x + 1$ at (1,0) is

The logarithmic function is strictly on (0, ∞).

1

15. The value of $\int e^x \left(\frac{1-x}{1+x^2}\right)^2 dx$ is

1

- (Q. 16-Q. 20) Answer the following questions.
- 16. Integrate: $\int x^2 e^{x^3} dx$

1

AI	17. Find the order and degree of the following differential equation :	1
	42 (4.)1/4	
	$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/4} + x^{1/5} = 0$ State that the given statement is True or False:	
18.	State that the given statement is True or False :	
	Rolle's theorem is applicable for the function $f(x) = x-1 $ in $[0, 2]$.	1
19.	Given $P(E) = \frac{1}{2}$ and $P(F) = \frac{1}{5}$, then find $P(E \cup F)$ if E and F are independent events.	1
20.	If $P(A) = P(B)$ and $A \& B$ are independent then find the values of $P(A \text{ and } B)$. OR	1
	State true or false: If A and B are two events such that $P(A) > 0$ and $P(A) + P(B) > 1$, then $P(B/A) \ge 1 - \frac{P(B')}{P(A)}$	
	P(A)	1
name .	other other Comments of the Co	
S	Section 'B' $\frac{dy}{dx} = \cos x \cos$	
AI		2
		_
22.	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ and $A = A'$, then find the value of α .	2
	Evaluate [-3x+14x-	
	[0 a 3] gliantique programmary problem graphically	
	If matrix $\begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$ is a skew-symmetric matrix, then find the values of a , b and c .	2
	[c 1 0] constitution all or medici	
22	$\frac{1}{1+x}$	2
23.	Integrate the function $\frac{2x}{1+x^2}$.	2
24.	Find the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$	2
	Colve the differential equation	
	Solve the differential equation	2
	$\frac{dy}{dx} + 1 = e^{x+y}$	
25.	If E and F are independent events, then show that	
	(i) E and \overline{F} are independent events.	
	(ii) \overline{E} and F are also independent events.	2
	where property and the second	(2)
26.	Show that the function f given by $f(x) = \tan^{-1}(\sin x + \cos x)$ is decreasing for all $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.	2
5	Section 'C'	
_	Consider $f: \mathbb{R}^+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given	or
	by $f^{-1}(y) = \sqrt{y-4}$, where R^+ is the set of all non-negative real numbers.	4

Let $f: N \to N$ be defined as

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{when } n \text{ is odd} \\ \frac{n}{2}, & \text{when } n \text{ is even} \end{cases}$$

for all $n \in N$. State whether the function f is bijective. Justify your answer.

28. Differentiate the following function w.r.t. x: 1000 By9 ball months and the following function w.r.t. x: 1000 By9 ball months are fitted by the fitted b

$$x^{\sin x} + (\sin x)^{\cos x}$$

All 29. Find the general solution of the following differential equation:

$$y - x\frac{dy}{dx} = a\left(y^2 + \frac{dy}{dx}\right).$$

If
$$y(x)$$
 is a solution of the differential equation $\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx} = -\cos x$ and $y(0) = 1$, then find the value of

and a = A' then find the value of the sine.

$$y\left(\frac{\pi}{2}\right)$$

30. Evaluate
$$\int \frac{x^2 - 3x + 1}{\sqrt{1 - x^2}} dx$$
.

31. Solve the following linear programming problem graphically:

Maximise
$$Z = 7x + 10y$$
 eminy with from useful and an entranging exercise $x = 1$

Subject to the constraints

$$4x + 6y \le 240$$

$$6x + 3y \le 240$$

$$x \ge 10$$

$$x\geq 0,y\geq 0$$

32. Find the variance of the distribution:

x	0	1	RC2	3	4	5
P(x)	$\frac{1}{6}$	5 18	$\frac{2}{9}$	1	1 1 1 1 1	un hau

Section 'D'

33. Find the inverse of the following matrix, using elementary transformation
$$\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$$
.

All 34. Prove that the curves
$$x = y^2$$
 and $xy = k$ cut at right angles if $8k^2 = 1$.

Show that the normal at any point on the curve $x = a\cos\theta + a\theta\sin\theta$, $y = a\sin\theta - a\theta\cos\theta$ is at a constant distance from the origin.

15. Find the coordinates of the point P where the line through A(3, -4, -5) and B(2, -3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, -1, 0). Also, find the ratio in which P divides the line segment AB.

Find the distance of the point (-1,-5,-10) from the point of intersection of the line

$$\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right) \text{ and the plane } \vec{r} \cdot \left(\hat{i} - \hat{j} + \hat{k}\right) = 5.$$

$$36. \text{ Find : } \int \frac{\sqrt{x^2 + 1} \{\log(x^2 + 1) - 2\log x\}}{x^4} dx.$$